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Abstract

A new stationary-type iterative method, the hybrid Jacobi iterative method, is developed for solving modal frequency-

response problems with non-proportional damping, which is indefinite linear system. The hybrid Jacobi iterative method is

derived by introducing a new preconditioning matrix that results in combining the Jacobi iterative method with the block

Jacobi iterative method for solving an indefinite linear system. Numerical demonstrations show accurate results and high

performance compared to the direct method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The frequency-response analysis (FRA) is one of the most popular methods in the industry for large and
complex structural vibration analysis. Because the FRA in terms of all of the finite element (FE) degrees of
freedom is expensive, industry has mainly used the modal FRA. Some challenging aspects of performing the
modal FRA arise from non-proportional damping [1,2].

The standard approach for solving the coupled modal frequency-response problem that includes the non-
proportional damping [3], which is not proportional to the mass and/or stiffness matrices, is to use either
direct methods or iterative methods [3]. Direct methods are the most straightforward and accurate, but are
expensive due to factorization costs that are Oðm3Þ operations [4]. An iterative method is a natural alternative
to a direct method for solving a large-scale linear system with a fully populated coefficient matrix. Iterative
methods have more speed advantages than direct methods, but the convergence rate of iterative methods
depends on spectral properties of the coefficient matrix. Therefore, a preconditioner is used to transform the
original matrix to an equivalent matrix which has more favorable spectral properties. A good preconditioner
makes the original system well conditioned and easy to solve. However, applying a preconditioner requires
some extra effort both for initial setup and for applying it in each iteration [4–6].

There are two categories of iterative methods [5]. Stationary methods are older, and simpler to understand
and implement, but usually not as effective. The following methods are in this category: Jacobi, Gauss-Seidel,
SOR, and SSOR method. In particular, these stationary iterative methods are effective for positive definite
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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linear system, but may break down for indefinite linear systems [6]. Non-stationary methods are a relatively
recent development based on a sequence of orthogonal vectors. The BiConjugate Gradient (BiCG) [5], the
Generalized Minimal Residual (GMRES) [7], and the Quasi-Minimal Residual (QMR) [8] methods are some
of the typical algorithms in this category. Their analysis is effective, but usually harder to understand.

This paper presents a stationary-type iterative method for solving the modal frequency-response problem
with non-proportional damping, which results in a complex indefinite linear system. In stationary methods,
the Jacobi method has the simplest preconditioner that consists of just the diagonal elements of the matrix.
However, a breakdown of the algorithm may occur corresponding to a zero pivot during the factorization of a
tridiagonal matrix if the matrix is indefinite. Instead, the Block Jacobi method has a block-diagonal matrix.
The Block Jacobi method has more advantages over the Jacobi method [6]. However, division operations are
usually quite costly since it needs factorization of each block for inversion.

In this paper, the hybrid Jacobi method is introduced with a new preconditioner for the damped modal
frequency-response problem. The numerical demonstrations are performed to investigate the accuracy and
convergence rate of the hybrid Jacobi method.
2. Modal frequency-response problem formulation

The frequency-response problem in the FE space can be written in the form [9]

½�o2M þ ioBþ ð1þ igÞK þ iKs�xðoÞ ¼ pðoÞ, (1)

where M, B, K and Ks 2 Rn�n are the FE mass, viscous damping, stiffness and local structural damping
matrices, respectively. The scalar g is the global structural damping level and o is the excitation frequency.
p 2 Cn is the load vector and x 2 Cn is the displacement vector.

With the partial eigensolution of the generalized eigenvalue problem KF ¼MFL, the modal frequency-
response problem is obtained in the form [9]

½�o2I þ ioB̄þ ð1þ igÞLþ iK̄s�zðoÞ ¼ f ðoÞ (2)

in which the size of matrices are m (m5n), which is the number of modes obtained from KF ¼MFL. Using
orthogonality relationships and mass normalization [3], the mass and stiffness matrices are diagonalized.
Note that B̄ ¼ FTBF, K̄s ¼ FTKsF 2 Rm�m are generally fully populated and f ¼ FTp 2 Cm. Once the modal
solution zðoÞ is obtained over the desired frequency range, the FE solutions can be obtained from the
backtransformation xðoÞ ¼ FzðoÞ.
3. An iterative methods for damped modal frequency-response analysis

3.1. Hybrid Jacobi method

For simplicity, Eq. (2) is denoted as

AðoÞz ¼ f (3)

in which AðoÞ ¼ �o2I þ ioB̄þ ð1þ igÞLþ iK̄s. Note that the coefficient matrix A is a complex indefinite
matrix and is frequency dependent. The diagonal terms ð�o2I þ ð1þ igÞLÞ are a dominant part in the matrix.
Usually, the value of g is much less than one and the eigenvalue of L is much greater than one, so that the real
part of the diagonal terms is the most dominant in the coefficient matrix.

The hybrid Jacobi method is derived by combining the Jacobi method [5] with the block Jacobi method [6]
to solve the indefinite linear system. In a stationary iterative method, the original problem is rewritten in the
equivalent form

Mzkþ1 ¼ Nzk þ f (4)

in which A ¼M �N and the superscript k is the iteration count. The number of iterations depends on the
spectral properties of the coefficient matrix, so that preconditioner is essential. With a good preconditioner M,
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M�1A becomes well conditioned. In the Jacobi method, the preconditioner M consists of just the diagonal
elements of the matrix. For the block Jacobi method, it has a block-diagonal matrix in M.

In the Hybrid Jacobi method, the new preconditioner or splitting matrix M is defined by noting the
coefficient matrix characteristic. First, A, z and f are partitioned in the following way:

. (5)

This splitting is made by noting the characteristic of the real part of the diagonal term ð�o2I þ ð1þ igÞLÞ that
is the dominant term in the coefficient matrix. A11 2 Cm1�m1 is where eigenvalues in L are clearly less than o2,
and for A33 2 Cm3�m3 they are clearly greater than o2. This means that A11 and A33 become the negative
definite and positive definite parts, respectively. Assume that the eigenvalues in L are in ascending order. The
remaining part A22 2 Cm2�m2 has diagonal elements close to zero because eigenvalues in L are close to o2. Off-
diagonal terms are relatively small compared to diagonal elements. The partition of the matrix A 2 Cm�m

depends on the excitation frequency o, and m ¼ m1 þm2 þm3. Note that the size of A22 is much smaller than
that of A11 and A33, that is, m25m1;m3.

Based on this partitioning, the preconditioner M is defined as

M ¼

diagðA11Þ 0

A22

0 diagðA33Þ

2
64

3
75. (6)

This preconditioner makes use of the Jacobi method for A11;A33, which is a negative and a positive definite
part of the matrix, and the block Jacobi method for A22 that is an indefinite part of the matrix. This
preconditioner takes little storage and easy to implement since the size of A22 is small compared to the size of
A11 and A33.

The brief algorithm of the Hybrid Jacobi method is shown in Fig. 1. Step (1) computes the initial solution.
Eqs. (1.1) and (1.3) are economical computations since A11 and A33 are diagonal matrices. To solve (1.2), the
symmetric indefinite linear solver algorithm, the Bunch–Kaufman algorithm [11,12], is used. Since A22 is a
relatively small matrix, m25m1;m3, we can solve the indefinite linear system inexpensively. Step (3)–(7) is the
iteration process. For each o, once A22 is factored in Step (1.2), it can be used again in the next iteration,
which also saves the computational cost. This algorithm is called at each excitation frequency o to solve the
corresponding damped modal FRA problem.
Fig. 1. Algorithm of the hybrid Jacobi method.
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3.2. Partitioning for the preconditioner M

To ensure the convergence of the Hybrid Jacobi method, the spectral radius r, which is the maximum
eigenvalue of M�1N, should satisfy the following condition [4]:

r ¼ maxfklk : l 2 lðM�1NÞgo1, (7)

where l represents the eigenvalue of M�1N. To this end, the optimal partitioning of A should be selected [10].
To partition the matrix A, the position and dimension of the submatrix A22 are selected in the following

way. First, the reference position x of the xth eigenvalue lx in the eigenvalue matrix L ¼ diagðl1; . . . ; lmÞ, in
which l1ol2o � � �olm, is defined as the position where the value of diagonal matrix DðoÞ ¼ ð�o2I þ LÞ is
minimum. Then, with the reference position x, the lower and upper position a;bðaobÞ of the submatrix A22

are defined such that jðlx=laÞ � rj is minimum and jðLb=LxÞ � rj is maximum, respectively, for a given
constant r (r41). The dimension of the submatrix A22 is b� aþ 1.

The position a and b vary at each excitation frequency o because the position x also is different for the
different o. The constant r, which should be greater than one, is provided by the user. As the value r increases,
the size of A22 also increases, which results in increasing convergence rate. However, the increasing
performance is compensated by the increasing factorization cost of A22 in the step (1.2) of the algorithm
described in Fig. 1. This is a typical trade-off between the convergence rate and the cost to set up the
preconditioner in iterative method implementations [5].
4. Numerical example

An automobile panel FE model consists of 24,638 elements. The total degrees of freedom (n) is 147,828. In
total, 830 modes (m) including 6 rigid body modes are obtained up to 1200Hz. FRA analysis is performed up
to 1000Hz excitation frequency. IBM RS/6000 SP 200MHz is used for the performance and accuracy
measurement. The FE matrices are obtained from the commercial FE software NASTRAN [9].

Table 1 shows the elapsed time for the modal FRA with a different size of A22 matrix. For the comparison
of accuracy and performance, a direct method, ZSYSV in LAPACK [12] that uses Bauch–Kaufman algorithm
[4], is employed. It takes 33min 51 s with the direct method. In the case of r ¼ 1:0, which represents the
conventional Jacobi iterative method that has only a diagonal matrix in M, the iterative method failed to
converge. However, by introducing the preconditioner M defined in Eq. (6), the solution converges. The
elapsed time of the iterative method is 5:8; 9:4; 9:9, and 11.0 times shorter than the direct method for the
different r ¼ 1:05; 1:2; 1:4, and 1.6.

Fig. 2 shows the dimension, and lower and upper position of the splitting matrix, A22, for all excitation
frequencies with different r. It shows that the size of A22 increases as the excitation frequency increases. Also,
as the size of splitting matrix A22 or r increases, the convergence rate increases dramatically as illustrated in
Fig. 3. Fig. 3 shows the relative norm of the residual of the hybrid Jacobi method for several different r at the
excitation frequency 500Hz. The relative norm of the residual is defined as kAzk � f k2=kf k2. With r ¼ 1:2 and
1:6, the solution is converged within 10 iterations. However, even after 100 iterations, the classical Jacobi
method ðr ¼ 1:0Þ has not reached convergence.
Table 1

The elapsed time of the modal frequency response analysis with the hybrid Jacobi method with different r (unit [mm:ss])

r Hybrid Jacobi

1.0 Fail

1.05 5:51

1.2 3:35

1.4 3:26

1.6 3:04
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Fig. 2. The dimension, and lower and upper positions of the splitting matrix A22.
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Fig. 3. Relative norm of residual of hybrid Jacobi method with different r.
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The frequency response from the hybrid Jacobi method with r ¼ 1:2 and the direct method is plotted in
Fig. 4(a) and (b), in which both frequency responses are indistinguishable. It shows that the iterative solution
is accurate compared to the direct method solution.

5. Conclusion

In this study, a new stationary-type iterative method, the hybrid Jacobi method, is developed for solving
modal frequency-response problems with non-proportional damping. A new preconditioner is introduced by
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Fig. 4. Comparison of frequency response with the hybrid Jacobi method ðr ¼ 1:2Þ and direct method.
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splitting the coefficient matrix into the negative definite and positive definite parts, and the indefinite part. This
preconditioner takes little storage and is easy to implement since the indefinite part is small. The new
preconditioner provides a significant convergence rate by combining the Jacobi iterative method for the
negative definite, and positive definite parts, with the block Jacobi iterative method for the indefinite part.
Numerical demonstrations show accurate result and high performance compared to the direct method.
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